Assessment of Land Resources for Agricultural Production in Latvia

Irina Pilvere

Abstract—Land is the main resource of agricultural production. During the recent period in the world and in Latvia, too, competition among various economic activities for land use increases, as cities expand, more land is needed for construction, forests are planted, and energy production from renewable sources develops. Therefore, on the one hand, the demand for agricultural land rises, but on the other hand, it is necessary to efficiently use it. The aim of this research is to assess the land resources exploited in agriculture in Latvia to determine the possibilities for their use in agricultural production in the future. For the research, the information of several registers of government institutions was used, and it revealed a significant difference in the utilised agricultural area (UAA) in Latvia, ranging from 1.82 million hectare (ha) to 2.37 million ha. The Rural Support Service (RSS), after surveying the UAA, has stated that 302 thousand (thsn) ha were unmanaged and overgrown in Latvia in 2011. The present research assesses the area of the presently unmanaged and overgrown agricultural area that could be used for producing agricultural goods in Latvia in the future.

Keywords—Assessment, Land Use, Utilized Agricultural Area.

I. INTRODUCTION

According to the Eurostat [1] definition, UAA describes the area used for farming. It includes the land categories: arable land, permanent grassland, permanent crops, other agricultural land such as kitchen gardens (even if they only represent small areas of total UAA). The term does not include unused agricultural land, woodland and land occupied by buildings, farmyards, tracks, ponds, etc. Latvia is the member state of European Union (EU) from 1 May of 2004. At the European level, existing legislation dealing with prime agricultural land is included in the Common Agricultural Policy (CAP) and various legislations related to water, soil, biodiversity, climate change and landscape and environmental assessment. The CAP has an enormous influence on land use. Its latest reform has resulted in a decoupling of subsidy from its original goal of increasing food production.

In Latvia, too, the problems of land use became more acute after its accession to the EU, as owing to various support payments and the open market, the price of land rose and not always farmers were able to purchase agricultural land to expand their agricultural business.

The aim of this research is to assess the resources of agricultural land in Latvia in order to determine the possibilities for their use in agricultural production in the future. In order to reach the research aim, the following research tasks have been set: 1) To determine the resources of UAA in Latvia. 2) To assess the real situation with agricultural land in Latvia. 3) To make an assessment of the possibilities for the use of agricultural land for agricultural production. 4) To produce a balance of agricultural land for Latvia for the future.

Research methodology and methods – several research methods were used: the monographic method, the document analysis method, analysis and synthesis methods, the constructive calculation method and the statistical analysis method. Data grouping was performed using the MS Excel tool Data Filter. The research analysed information and national statistical data from the Central Statistical Bureau (CSB), the State Land Service (SLS), the RSS, and the Latvian State Forest Research Institute (LSFRI) “Silava”. In the study design process, special and general literatures in relation to the topic of research were used.

II. LITERATURE REVIEW

There are several researches about land use scientific aspects. Scientists R.D. Singh and V.K. Singh [2] emphasise that the government is also influencing resource use and land use as development strategy …. It is necessary to examine the land use and the resource use efficiencies in the agricultural areas in regional and temporal framework. M.D.A. Rounsevella and co-authors [3] point that one of the important issues when dealing with land use change in Europe is that these changes will also be affected by events outside of Europe. This is especially important in relation to trends in global trade. Thus, land use in Europe reflects not only demand (and supply) of the internal market, but also the demand for land-based goods (e.g. food, wood products) that derive from outside of Europe.

Land-use changes impact the quality and availability of soils, water, and biodiversity. Globally, croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, and significant losses of biodiversity [4].

M.Puddu, F.Bartolini and D.Viaggi [5] point that factor markets are a central issue in analyses of farm development and of agricultural sector vitality. Among the different production factors, land is one of the most studied. The land market is an imperfect market, because of its low substitutability, poor transparency, and high transaction costs.
S. Verzandvoort and M. Hack Alterra [6] emphasise that there is a renewed interest for agricultural land in Europe, and especially prime agricultural land. This derives from demands for increased food and biomass production from a growing world population. Prime agricultural land includes land suitable for agriculture due to its physical, chemical and biological properties, which best meets the conditions of providing maximum yields while providing least pressure on the environment, and requiring least inputs.

Efficient land use is a concern of Latvian scientists: A. Dobele [7], I. Pilvere [8], A. Auzins [9], V. Parsova, and E. Kapostins [10]. Therefore, it is important to identify the existing agricultural land resources in Latvia and to carry out studies on increasing the efficiency of their use.

III. AGRICULTURAL LAND RESOURCES IN LATVIA

The utilised agricultural area, which amounted to 172 million ha for the EU-27 in 2007, has declined only slightly over the last decade (-0.3% between 1995 and 2007) in the EU-15. Although the majority of EU farms are located in the EU-12, more than 70% of the utilized agricultural area is located in the EU-15 [11]. Considering the utilised agricultural area, France (27.1 million ha or 15.9% of the total UAA of the EU-27) had the largest area, followed by Spain (23.8 million ha in 2009, 14.0%), Germany (16.7 million ha, 9.8%), the United Kingdom (15.9 million ha, 9.4%), Poland (14.4 million ha, 8.5%), Romania (13.3 million ha, 7.8%), and Italy (12.9 million ha, 7.6%). These seven Member States accounted for almost three quarters of the utilised agricultural area in the EU-27 in 2010 [12]. According to SLS data, the UAA in Latvia totaled 2.3 million ha in 2012, accounting for 1.3% of the total UAA of the EU-27. Regardless of the comparatively small UAA, it is necessary to ascertain its condition and the possibilities for its use for agricultural activity.

There are several institutions in Latvia that deal with keeping records of UAA. Within its competence, the SLS is responsible for keeping records and monitoring of the land as a national wealth and the objects related to it in order to ensure the land is effectively exploited and preserved [13]. The RSS introduces an administrative, financial, and technical management system to implement national and European Union support measures. For this purpose, a geographic information system (GIS) for the Field Register has been developed that keeps information on utilised agricultural land in the form of field blocks. This information is used in administering EU direct payments, including single area payments (SAPs). The LSFRI “Silava”, when statistically inventorying forest land, determines the area of agricultural land and its condition. The CSB identifies the area of utilised agricultural land. A comparison of these data is shown in Fig. 1.

From the information summarised in Fig. 1 can conclude that:

• in 2011 in Latvia, according to the SLS, there were 2.35 million ha, whereas the RSS Field Register GIS showed only 2.12 million ha classified in field blocks; the difference was 223.7 thsn ha. In the beginning of 2012, the difference between the agricultural area registered by the SLS and the area recorded by the RSS and classified in field blocks rose to 266.9 thsn ha;
• according to the SLS, the area of UAA decreased by 54.9 thsn ha or 2.3% in the period 2006-2012, while the area of field blocks, according to the RSS, decreased by 298.7 thsn ha or 12.6% in the same period, which indicated an intensive removal of UAA parcels from the Field Register due to incompliance with good agricultural and environmental conditions;
• data of the LSFRI “Silava” on the UAA are similar to those of the SLS;
• assuming that the area being applied for SAPs actually show the real area of land farmed, in 2011 it accounted for only 72% of the area of field blocks registered by the RSS Field Register GIS and only 65% of the area of agricultural land recorded by the SLS;
• the area of UAA recorded by the CB, in the period of analysis, decreased by 39.4 thsn ha or 2.1%. In 2011, the area shown by the CB is smaller than that recorded by the RSS by as many as 310.0 thsn ha, and it is smaller than the area registered by the SLS by as many as 533.7 thsn ha, which indicates the possibly unmanaged and unused area of
agricultural land in Latvia.

Assuming that the area of field blocks, identified by the RSS Field Register GIS, show more real data on the land resources available for agricultural production, it is necessary to make a detailed analysis of this information (Table I).

TABLE I

Distribution and Area of Field Blocks in Latvia in March of 2012

<table>
<thead>
<tr>
<th>Size distribution</th>
<th>Field blocks</th>
<th>Area</th>
<th>On average per field block, ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 - 5 ha</td>
<td>211872</td>
<td>339739</td>
<td>1.60</td>
</tr>
<tr>
<td>5.01 - 10 ha</td>
<td>35159</td>
<td>249026</td>
<td>7.08</td>
</tr>
<tr>
<td>10.01 - 20 ha</td>
<td>23893</td>
<td>336117</td>
<td>14.07</td>
</tr>
<tr>
<td>20.01 - 50 ha</td>
<td>17840</td>
<td>552349</td>
<td>30.96</td>
</tr>
<tr>
<td>50.01 - 100 ha</td>
<td>6081</td>
<td>415040</td>
<td>68.25</td>
</tr>
<tr>
<td>more than 100.01 ha</td>
<td>1329</td>
<td>172002</td>
<td>129.42</td>
</tr>
<tr>
<td>Total</td>
<td>296174</td>
<td>2064272</td>
<td>6.97</td>
</tr>
</tbody>
</table>

The average area of field block is almost 7 ha, and 83% of the total number of field blocks do not exceed an area of 10 ha, while 71% of land parcels are in field blocks larger than 10 ha. One can conclude that the UAA is fragmented in Latvia, which hinders the efficient use of it for agricultural production.

IV. Real Situation with the UAA in Latvia

In two years (2010 and 2011), the RSS has visually surveyed the units of UAA, the size of which exceeds one hectare, as in 2010 Cabinet of Ministers Regulation No.635 “Procedure of Surveying and Identifying the Area of Unmanaged Agricultural Land and of Providing Information on it” came into force [19]. This Regulation stipulates that an additional rate of 1.5% has to be applied for assessing the property tax if a UAA is not exploited.

Unused agricultural land is classified into two groups: unmanaged if the grass on it has not been mowed, harvested, or chopped and spread at least once until 1 September of the current year or overgrown if trees and shrubs grow on it. The survey results are summarised in Tables II and III [20, 21].

TABLE II

Unmanaged Agricultural Areas and their Distribution in Latvia 2010-2011

<table>
<thead>
<tr>
<th>Size group</th>
<th>2010</th>
<th>2011</th>
<th>2011/2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>Structure, %</td>
<td>Ha</td>
<td>Structure, %</td>
</tr>
<tr>
<td>0 - 5 ha</td>
<td>93554</td>
<td>30</td>
<td>87313</td>
</tr>
<tr>
<td>5 - 10 ha</td>
<td>84706</td>
<td>27</td>
<td>72793</td>
</tr>
<tr>
<td>10 - 50 ha</td>
<td>124612</td>
<td>40</td>
<td>92270</td>
</tr>
<tr>
<td>50 - 100 ha</td>
<td>9102</td>
<td>3</td>
<td>5991</td>
</tr>
<tr>
<td>100 - 200 ha</td>
<td>2073</td>
<td>1</td>
<td>2007</td>
</tr>
<tr>
<td>Total</td>
<td>314047</td>
<td>100</td>
<td>260374</td>
</tr>
</tbody>
</table>

Regardless of the fact that the total unmanaged area of agricultural land decreased 17% in 2011 compared with 2010, however, the total share of such land areas is significant, as it exceeds an area of 260 thousand ha, of which in 38% cases such land areas are greater than 10 ha.

A similar situation is observed for the overgrown agricultural area; it decreased 16% in 2011 compared with 2010, and 35% of the overgrown areas are larger than 10 ha. It means that a unique situation exists in Latvia, as more than 302 thousand ha of agricultural land was not used for agricultural production in 2011. Therefore, it is important to assess whether this area might be partially or fully used for agricultural production in the future, as the latest United Nations estimates of population suggest that by 2050 the planet will be populated by 9.1 billion persons, up from the current population of 6.8 billion. The latest Food and Agriculture Organization of the United Nations (FAO) estimates indicate, however, that agricultural production would need to grow globally by 70 percent over the same period [22].

V. Assessment of UAA Regarding the Possibility of Using Them for Agricultural Production in Latvia

For a detailed assessment on the possibilities of using the agricultural area, land parcels, the purpose of use of which was agricultural production, were selected, while the agricultural land located in cities was excluded from the assessment. Thus, additional information on 36724 ha (88% of the total area) of the overgrown area in 9082 cadastral units (parcels of holdings) and on 245762 ha (94%) of the unmanaged agricultural area in 50217 cadastral units was requested from the SLS regarding each cadastral unit.
selected: 1) address (civil parish, municipality); 2) owner/user, legal holder – whether it is a legal entity or individual, a resident/non-resident, and the size of corresponding cadastral unit; 3) distribution by land uses: agricultural land and its distribution (arable land, pastures, meadows, permanent crops), forests, water, construction, roads; and 4) average agricultural land qualitative estimate of corresponding land parcel, in points.

Using the MS Excel tool Data Filter, information in the database was grouped by several parameters, based on various assumptions which were examined in the assessment of overgrown and unmanaged agricultural land. The assessment was based on agricultural land qualitative estimates (in points per ha) (ALQE), which is a measurement of soil fertility - the higher number of points, the more fertile is the soil. The average weighted ALQE is 38 points in Latvia [23].

Assumption 1. According to the findings of experienced agronomists in Latvia, it is economically inefficient to exploit agricultural land whose quality estimate does not exceed 25 points, as too large investments are needed – additional fertilisation, liming, and tilling. Based on this assumption, all parcels of land are grouped into two parts: those whose qualitative estimate is less than 25 points and those with more than 25 points; it is believed that in agricultural production, it is efficient to exploit only the overgrown and unmanaged land with a qualitative estimate of more than 25 points. The results are summarised in Tables IV and V.

<table>
<thead>
<tr>
<th>Size groups</th>
<th>Individuals</th>
<th>Legal entities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Land under jurisdiction</td>
<td>Other status</td>
</tr>
<tr>
<td>1 - 5 ha</td>
<td>39335</td>
<td>22</td>
</tr>
<tr>
<td>5.01 - 10 ha</td>
<td>35878</td>
<td>33</td>
</tr>
<tr>
<td>10.01 - 50 ha</td>
<td>46732</td>
<td>89</td>
</tr>
<tr>
<td>> 50 ha</td>
<td>3004</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>125018</td>
<td>144</td>
</tr>
</tbody>
</table>

According to Assumption 1, up to 171 thou ha or 66% of the presently unmanaged agricultural land area might be used in agricultural production in the future. Besides, the size of 41% of the potentially usable land parcels are larger than 10 ha. Of this area, 73% is owned by individuals, and it will depend on these individuals if this land is farmed and used for producing agricultural products.

In the same way, 22 thou ha or 53% of the overgrown agricultural land area, of which 72% is owned by individuals, might be used (Table V).

<table>
<thead>
<tr>
<th>Legal entities</th>
<th>Land under jurisdiction</th>
<th>Other status</th>
<th>National government</th>
<th>Reserve land to finish the land reform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 5 ha</td>
<td>5255</td>
<td>2</td>
<td>965</td>
<td>476</td>
</tr>
<tr>
<td>5.01 - 10 ha</td>
<td>4756</td>
<td>17</td>
<td>1153</td>
<td>241</td>
</tr>
<tr>
<td>10.01 - 50 ha</td>
<td>58278</td>
<td>16</td>
<td>2522</td>
<td>240</td>
</tr>
<tr>
<td>> 50 ha</td>
<td>261</td>
<td>0</td>
<td>274</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15979</td>
<td>35</td>
<td>4914</td>
<td>958</td>
</tr>
</tbody>
</table>

Assumption 2. The use of agricultural land owned by individuals is affected both by the size of a land parcel and its qualitative estimate and by the circumstance of if the place of residence of the owner is associated with this holding.

The following additional indicators are selected: area of a unit of unmanaged and overgrown land, place of residence of the land owner (user, holder), and purpose of land use. It is assumed that, for instance, if the purpose of land use is agricultural production, it is probable that an owner who does not live on his or her holding will not farm an area of less than 4 ha even if its qualitative estimate is 26-30 points, whereas if a qualitative estimate of land is within a range of 21-25 points, an area of more than 5 ha might be used. Other probabilities in relation to the qualitative estimate of agricultural land, the size of holding, and the place of residence of an owner are similarly determined, classifying land uses into 5 groups: a 100% probability that the land will be farmed in the future, 75%, 50%, 25%, and no probability that the land is unmanaged (it means the land will be used in agricultural production). The results are summarised in Table VI.

Criteria for the characteristics of land parcels:

- 100% probability that land will not be farmed - 1) ALQE less than 20 points. 2) ALQE within 21-25 points, the owner does not live on the holding. 3) ALQE within 21-25 points, the owner lives on the holding, but the size of land parcel is < 4 ha. 4) ALQE within 26-30 points, the owner does not live on the holding, the size of land parcel is < 4 ha.
- 75% probability that land will not be farmed - 1) ALQE within 21-25 points, the owner lives on the holding, the size of land parcel is > 4 ha. 2) ALQE within 26-30 points, the owner lives on the holding, but the size of land parcel is < 4 ha. 3) ALQE within 26-30 points, the owner does not live on the holding, the size of land parcel is > 4 ha.
- 50% probability that land will not be farmed - 1) ALQE within 26-30 points, the owner lives on the holding, but the size of land parcel is > 4 ha. 2) ALQE within 31-35 points, the owner does not live on the holding, the size of land parcel is < 4 ha.
• 25% probability that land will not be farmed-1) ALQE within 31-35 points, the owner lives on the holding, but the size of land parcel is >4ha. 2) ALQE within 31-35 points, the owner does not live on the holding, the size of land parcel is < 4 ha. 3) ALQE within 36-40 points, the owner does not live on the holding, the size of land parcel is <4 ha.

TABLE VI

<table>
<thead>
<tr>
<th>Assumptions on the land owned, held, or used by individuals</th>
<th>Possibly land will not be farmed in the future, ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% probability that land will not be farmed</td>
<td>12538</td>
</tr>
<tr>
<td>75% probability that land will not be farmed</td>
<td>2788</td>
</tr>
<tr>
<td>50% probability that land will not be farmed</td>
<td>788</td>
</tr>
<tr>
<td>25% probability that land will not be farmed</td>
<td>830</td>
</tr>
<tr>
<td>Total</td>
<td>16944</td>
</tr>
</tbody>
</table>

As regards the overgrown agricultural areas belonging to individuals, one can conclude that overgrown agricultural land areas of 16944 ha or 41% and unmanaged area 90798 ha or 35%, analysed in detail, out of the total area assessed in detail might not be farmed in the future, as their qualitative estimate, the size of land parcels, and the place of residence of land owners are the hindering factors (Table VI). According to Assumption 2, the difference – 24697 ha of the overgrown area and 169549 ha of the unmanaged area – might be used in agriculture in the future, based on the size of managed land parcels, their ALQE, and the place of residence of land owners.

Assumption 3. The most precise condition of an existing land parcel and the possibilities of using it in agriculture in the future can be identified by examining it visually.

This method was applied to assess the overgrown land areas by visually examining each land parcel (totally 9082 cadastral units), exploiting the publicly available RSS Field Register GIS [14], based on the following parameters:

• the present extent of overgrowth (to what extent a given land parcel is overgrown with trees or shrubs, and their density);

• configuration, assuming that small land parcels of complicated configuration that are partially overgrown will be difficult to use in agriculture in the future;

• location, identifying the overall situation in the vicinity of a given land parcel by assuming that in the future, it will be difficult to use small parcels and those located far away from the main agricultural activity area, however, if these parcels are located close to an intensive agricultural activity area, there is a motivation to farm them in the future;

• size of parcel.

A visual assessment of every overgrown land parcel allowed to state that in reality these parcels (approximately in 80% cases) have overgrown to a great extent, which means that their owners have not registered the correct use of their land parcels at the SLS. According to optimistic forecast, of the land classified in the category of overgrown land, only 6182 ha or 15% of the total area assessed will be used in agriculture in the future.

After summarising the information on the assumptions and the assessment of agricultural land, one can conclude that the following areas might be used for agricultural production in the future:

• 131064 ha of the unmanaged agricultural land (an average, according to Assumptions 1 and 2) or 50% of the unmanaged area in 2011;

• 6182 ha (Assumption 3, which is regarded as the most precise one) of the overgrown agricultural land or 15% of the overgrown area in 2011.

VI. POSSIBLE UAA BALANCE IN THE FUTURE

Based on the assumptions and calculations made in the previous chapter, it is possible to produce a potential balance of UAA for agricultural production in Latvia that is based on 2 main factors: 1) resources of UAA available in the period of conducting the assessment; 2) potential land resources from the presently overgrown and unmanaged area of agricultural land (Table VII).

Variant 1 employs an approach that the CSB has precisely determined the present area of UAA to which a potential area of the presently overgrown and unmanaged land that might be used in the future, according to the calculations performed in the previous chapter, is added.

TABLE VII

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant 3</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAA in 2011</td>
<td>1815.9</td>
<td>x</td>
<td>x</td>
<td>CSB</td>
</tr>
<tr>
<td>Area of field blocks in the beginning of 2012</td>
<td>x</td>
<td>2064.3</td>
<td>x</td>
<td>RSS</td>
</tr>
<tr>
<td>Area being applied for SAPs in 2011</td>
<td>x</td>
<td>x</td>
<td>1538.1</td>
<td>RSS</td>
</tr>
<tr>
<td>Possibly usable area out of the presently unmanaged area</td>
<td>131.1</td>
<td>131.1</td>
<td>131.1</td>
<td></td>
</tr>
<tr>
<td>Possibly usable area out of the presently overgrown area</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Total for agricultural production</td>
<td>1953.2</td>
<td>2201.6</td>
<td>1675.4</td>
<td></td>
</tr>
</tbody>
</table>

Variant 2 is based on the area recorded as agricultural land in the RSS Field Register GIS, adjusted for the area of the presently overgrown and unmanaged land which might be used in the future, according to the calculations performed in the previous chapter. These estimates are too optimistic; given the fact the area recorded in the RSS Field Register GIS is reduced every year after revealing that the land does not comply with the status of utilised and managed land (Fig. 1).
Variant 3 employs the area being applied for SAPs in 2011, believing it shows the real area of utilised and managed agricultural land; it is adjusted for the area of the presently overgrown and unmanaged land which might be used in the future, according to the calculations performed in the previous chapter. It has to be taken into consideration in this variant there is land that is farmed, but its owners or users do not apply for SAPs, as they do not want to be controlled or they regard the procedure of receiving these payments as bureaucratic as well as it is possible that their land area is small (≤1 ha) or the area of one field is less than 0.3 ha, which is one of the eligibility criteria for receiving SAPs.

If an average value is calculated for the area of UAA to be used for agricultural production in the future, according to all the three variants, possibly 1954 thousand ha might be used in Latvia or, if rounded up, not more than 2 million ha (instead of the present area of 2.3-2.4 million ha). Therefore, the problem of a more efficient use of agricultural land will become more and more topical, as: 1) the available resources have to be exploited as much efficiently as possible; 2) measures has to be taken to promote the use of the land that will not be exploited for producing agricultural products in the future.

VII. CONCLUSION

In Latvia, the resources of UAA are recorded in databases of various government institutions. In 2011, the UAA ranged from 1.82 million ha in the CSB database to 2.37 million ha in the LSFRI “Silava” database. In the period since 2006, the area of UAA recorded in the databases of all the institutions has decreased; the largest decrease by 298.7 thsn ha was observed in the database of the RSS, which indicated that this area was in compliance with the good agricultural and environmental condition.

Since 2010, surveys of the UAA have been conducted in Latvia. According to the surveys, 302 thsn ha of unmanaged and overgrown land existed in Latvia in 2011 that was not used in agricultural production, therefore, it is important to assess it to determine if this area might be used for agricultural production in the future.

It was found in the assessment that possibly approximately 131.1 thsn ha or 50% of the unmanaged area and only 6.2 thsn ha or 15% of the overgrown area in 2011 might be exploited in Latvia in the future, thus the UAA in Latvia might reach not more than 2 million ha, meaning that 0.3-0.4 million ha could be used for other purposes. It means that the resources of UAA decrease in Latvia, and these resources have to be exploited as much efficiently as possible.

ACKNOWLEDGMENT

The research was promoted with the support of the State Stock Company “Latvia’s State Forests”, Contract No. 5.5.-9.1/15001/06/148. Publication and dissemination of research results has been made due to the funding of the European Regional Development Fund Project „Promotion of scientific activities of LLU”, Contract No. 2010/0198/2DP/2.1.1.2.0/10/APIA/VIAA/020.

REFERENCES

English as a Global Lingua Franca

Dr. Sayeh S Abdullah and Prof. Mohammad Latif Chaudhary

Abstract—This research is a compact study of the evolution of languages and the factors leading to their gaining of the dominating role during one period but witnessing decline in their status in the other with particular reference to English.

Role of English as a global language is discussed and a depiction of its emergence is offered to enable the reader to detect the facts and the underlying motives of spreading English world-wide. Analysis of the history, evolution of English and its impact on other languages leads us to sketch out a prospective future of it as a global lingua franca.

Keywords—English, global lingua franca, history, evolution, simultaneous.

I. PREAMBLE

Every language on the globe is found going through a perpetual process of evolution or devolution. The languages pass through the stages of distinction or extinction according to their role and requirement. History tells us that a language enjoying the dominance during one era, has been seen vanishing in the other. So many factors influence the growth and development of a language. It has been witnessed that the language which has to its credit a good deal of research work gains significance and popularity. In the past, languages such as Arabic, Roman, French and German had their own periods of supremacy. Currently this credit goes to English as it is understood, or due to numerous reasons, is desired to be understood by almost every individual and every nation on the globe who want to enjoy access to the latest developments, whatsoever field of study it may be. But it can't be said certainly how long this charisma of English will survive. Whether it would retain its present position for ever or would fade away with the passage of time, it is in the hands of the time and man. At present, English, undoubtedly, is a lingua franca of our planet. Nowadays, it is used by people in almost every nook and corner of the world. It is interesting to know how English become so widely spread. This research aims at probing into the facts in order to find out the factors which has caused the emergence of English as a global lingua franca. With this target of research, the history of English is depicted to understand the spread of English around the globe. Besides, the impact of the dominant lingua franca to the life of other languages is also discussed. Finally, an attempt has been made to determine the prospective future of English as a global lingua franca.

Before entering into the discussion about the present and the prospective status of English as the global lingua franca, it seems appropriate to determine what, in fact, the global lingua franca is.

II. DEFINITION OF GLOBAL LINGUA FRANCA

"Global Lingua Franca" in a sociolinguistic context refers almost literally to the use of a language as a global language. It means a common language for the world.

A language achieves a genuinely global status when it develops a special role that is recognized in every country. Having such a status, the global lingua franca has to be of such a great significance as to influence all the domains of the human activity in the world.

III. EVOLUTION OF LANGUAGES

Human history has witnessed the phenomenon of evolving the languages persistently. The history has also experienced that the phenomenon of evolvement is not only unstoppable but also uncontrollable. This phenomenon has never been spontaneous rather it has very often been simultaneous to relative peripheral changes and appears as an organic process, which happens very slowly with the change of the languages and the people who use them.

A simple look at the lists of new words added to the Oxford English Dictionary every year is sufficient for the elaboration of this evolution. There we always find words, which a few years before, would not have been understood by anyone. Imagine this over many thousands of years and it will help in conceiving the pattern in which languages evolve.

To consider the enormous changes in the language of English. Just have a look at the Old English, and the likes of Beowulf, the language is almost impossible to be understood without some kind of translation aid.

Then we have Chaucer and Middle English, which is still tough to be comprehended, but possible, with a certain amount of knowledge. Shakespeare’s English is pretty much understood by all who have studied English literature to a certain degree, but also would not be understood by all and sundry.

So, we can make sense of all forms of the language, but the further we go back, the more aids we need to help us do this. Both the vocabulary and the syntax of the text changes as time marches on.