Comparative Analysis for reduction of energy using various Routing Protocol in Mobile Adhoc Network

Suresh Kurumbanshi, Dr. Avichal Kapur, and Dr. Preeti Bajaj

Abstract—Although establishing correct & efficient route is an important design issue in mobile adhoc network, a more challenging goal is to provide energy efficient route. This paper classifies the energy aware routing protocols proposed for MANET. They minimize active communication energy required for transmitting or receiving packets. In this paper comparative analysis for energy reduction using various routing protocols is carried out. This paper is also based on how these different protocols help in minimizing energy level of a wireless node in a mobile adhoc network. Computation of residual energy of a node after communication task is over in mobile adhoc network is carried out & simulated in NS2 Software. The purpose of this paper is to facilitate the research effort in computing & analyzing the solution to offer energy efficient routing mechanism.

Keywords—DSDV, AODV, MANET, ENERGY.

I. INTRODUCTION

A. Mobile Adhoc Network:

MANET is a wireless network that operates independently of any fixed infrastructure or central administration. A node communicates directly with nodes within wireless range and indirectly with other nodes using dynamically computed routes through the nodes of Manet. In effect, all nodes are routers, participating in a protocol by which routes are discovered and maintained. A Manet is characterized by energy-constrained mobile nodes, bandwidth-constrained, variable-capacity links and unpredictable, dynamic topology.

B. Ad hoc On-Demand Distance Vector

The Ad hoc On Demand Distance Vector (AODV) routing algorithm is a routing protocol designed for ad hoc mobile networks. AODV is capable of both unicast and multicast routing [1]. It is an on demand algorithm, meaning that it builds routes between nodes only as desired by source nodes.

It maintains these routes as long as they are needed by the sources. The AODV protocol uses route request (RREQ) messages flooded through the network in order to discover the paths required by a source node. An inter-mediate node that receives a RREQ replies to it using a route reply message only if it has a route to the destination whose corresponding destination sequence number is greater or equal to the one contained in the RREQ. The RREQ also contains the most recent sequence number for the destination of which the source node is aware.

A node receiving the RREQ may send a route reply (RREP) if it is either the destination or if it has a route to the destination with corresponding sequence number greater. If this is the case, it unicasts a RREP back to the source. Otherwise, it rebroadcasts the RREQ. Nodes keep track of the RREQ’s source IP address and broadcast ID. If they receive a RREQ which they have already processed, they discard the RREQ and do not forward it. As the RREP propagates back to the source nodes set up forward pointers to the destination. Once the source node receives the RREP, it may begin to forward data packets to the destination. A route is considered active as long as there are data packets periodically traveling from the source to the destination along that path.

Once the source stops sending data packets, the links will time out and eventually be deleted from the intermediate node routing tables.

C. Destination-Sequenced Distance-Vector Routing

Destination-Sequenced Distance-Vector Routing (DSDV) is a table-driven routing scheme for ad hoc mobile networks based on the Bellman-Ford algorithm [4]. In DSDV, each node maintains a next-hop table, which it exchanges with its neighbors. In each data packet sent during a next-hop table broadcast or incremental updating, the source node appends a sequence number. This sequence number is propagated by all nodes receiving the corresponding distance-vector updates, and is stored in the next-hop table entry of these nodes. A node, after receiving a new next-hop table from its neighbor, updates its route to a destination only if the new sequence number is larger than the recorded one, or if the new sequence number is the same as the recorded one, but the new route is shorter.

D. Reactive routing protocols

On the Contrary of proactive protocols, reactive protocols calculate the route on request. If a source node needs to send a message to a destination node, then it sends a request to all members of the network. After receiving the request, the destination node sends a response back to the source.
However, the routing application generates a slow pace because of the research paths which can degrade application performance.

Such protocol has the disadvantage of being very costly in terms of energy and packets transmission when determining routes but has the advantage of not having to hold unused information in routing tables.

E. Energy consumption states

The network interface has four possible energy consumption states: transmit and receive are for transmitting and receiving data. In the idle mode, the interface can transmit or receive traffic. This is the default mode for ad hoc environment. The sleep mode has extremely low power consumption.

In an ad hoc environment, there are no base stations and nodes cannot predict when they will receive traffic. Therefore, the default state in an ad hoc network is the idle state, rather than the sleep state [12]. The cost for a node to send or receive a network-layer packet is modeled as linear. There is a fixed cost associated with channel acquisition and an incremental cost proportional to the size of the packet.

\[\text{Cost} = m \times \text{size} + b \]

II. Table

<table>
<thead>
<tr>
<th>Simulation Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation</td>
<td>TwoRay Ground</td>
</tr>
<tr>
<td>Antenna</td>
<td>Omni Antenna</td>
</tr>
<tr>
<td>Packet Size</td>
<td>512 bytes</td>
</tr>
<tr>
<td>Packet interval</td>
<td>Variable</td>
</tr>
<tr>
<td>Total number of mobile nodes</td>
<td>Variable</td>
</tr>
<tr>
<td>Traffic Type</td>
<td>CBR</td>
</tr>
<tr>
<td>Simulation Time</td>
<td>10 ms</td>
</tr>
<tr>
<td>Area</td>
<td>1000*1000m²</td>
</tr>
</tbody>
</table>

III. Results

![Fig. 1 Nam Visualization of 6 mobile nodes](image1)

![Fig. 2 Nam Visualization of 15 mobile nodes](image2)

![Fig. 3 Nam visualization of 50 mobile nodes using DSDV Protocol](image3)

![Fig. 4 Nam visualization of 100 mobile nodes using AODV Protocol](image4)
Fig 5 Nam visualization of 200 mobile nodes using AODV Protocol

Fig. 6 Nam visualization of 300 mobile nodes using DSDV Protocol

Fig. 7 Energy graph of 15 mobile nodes using DSDV Protocol

Fig. 8 Energy graph of 15 mobile nodes using AODV Protocol

Fig. 9 Energy graph of 100 mobile nodes using DSDV Protocol

Fig. 10 Energy graph of 100 mobile nodes using AODV Protocol

Fig. 11 Energy graph of 200 mobile nodes using DSDV Protocol

Fig. 12 Energy graph of 200 mobile nodes using AODV Protocol
IV. CONCLUSION

A MANET consist of an Autonomous ,self-organizing and self-operating node ,each of which communicates directly with the nodes within its wireless range or indirectly with other nodes via a dynamically computed multi hope route. Due to its many advantages & different application area, the field of MANET is rapidly growing and changing. While there are many challenges that needs to meet.

In order to facilitate communication within the Manet, an efficient routing Protocol is required to discover route between mobile nodes. Energy efficiency is one of the main problems in MANET, especially in designing a routing Protocol. In many cases it is difficult to compare them directly since each method has a different goal with different assumption and employs different means to achieve the goal. In this paper we have suggested AODV routing protocol for reducing energy of a wireless mobile nodes.

Packet transmitted using DSDV protocol will lose energy 64% at the end of simulation time for small mobile adhoc network (In our case, network of 15 mobile nodes).Demand for energy required for transmission & reception increases as simulation time increases. Residual Energy with the wireless mobile node is more if AODV Protocol is used & less energy is wasted in transmission & reception of packets.

ACKNOWLEDGMENT

I would like to extend a gratitude to Shri Amrish Patel, President SVKM & Chancellor, NMIMS University for encouraging research facility & providing global platform at NMIMS, Shirpur Campus. I would also like to extend my gratitude to G.H.Raisonio college of Engineering, Nagpur, i.e. my Research Centre for providing research Platform and all my colleagues, students & well-wishers.

REFERENCES

Mr. Suresh Kurumbanshi has done B.E. and M.Tech degrees in Electronics Engineering from Nagpur University. During 1999-2000, he worked Finoalex Cables ltd.Pune & worked as Head of Electronics Engineering Department of Rajeev Gandhi College of Engineering Nagpur . He is pursuing PhD from G.H.R.C.E, Nagpur & worked in the same organization in Electronics & Communications Engineering Department for more than 6 years as a Sr.Lecturer. He is currently working as Assistant Professor in the Department of Electronics & Telecommunication Engineering & In charge ISTE Chapter in Mukesh Patel School of Technology, Management & Engineering of Narsee Monjee Institute of Management Studies, Deemed to be University,Mumbai Shirpur off Campus. His research area includes Adhoc Network ,mobile communication, and wireless access network using stratospheric platforms.

Dr. Avichal Kapur who has throughout placed in the meritorious list in academics did his M.Tech (Electronics & Control) from BITS, Pilani by scoring 1st rank in the order of merit and later on earned his PhD in Electronics Discipline (Title - Real Time Embedded Applications in Image Processing) from VNIT, Nagpur.

His area of expertise is strategic Planning, Project Management, evaluation processes and procedures, Embedded System Design & Development & Teaching.

He has eminent positions in various organizations which includes:

i) Bhabha Atomic Research Centre, Mumbai as Scientific Officer
ii) All India Council for Technical Education (AICTE), New Delhi, as an Asst. Director
iii) National Board of Accreditation (NBA), New Delhi as an Asst. Director
iv) Homi Bhabha National Institute (HBNI) Mumbai as an Assistant Dean.
v) Dean (QA) & Advisor, NYSS, Nagpur.

He is a Member of IEEE, ISTE & IE(I). He is also a Technical Paper Evaluator/Reviewer for various IEEE conferences in Technical Institutions across the Country

He is a member of Global Engineering Deans Council, an initiative of International Federation of Engineering Education Societies and American Society for Engineering Education.He has to his credits 20 papers in International Conferences/ Journals and published six technical reports.

He is on the Advisory board of various Institutions/Universities, an Advisory Board Member for various IEEE conferences in Technical Institutions across the country. He is a Member of Academic Audit Committee of Kalinga Institute of Industrial Technology [KIIT], Deemed University, Bhubaneswar.

He has been an active participant in the various initiatives taken by the Govt. of India National Quality Initiative, National Design Initiative, National Initiative on Engineering Experimentation, National Initiative on Institutional Competitiveness, Regulations for Entry & Operation of Foreign Universities/Institutions, associating National Board of Accreditation (NBA) with the International Agencies like Washington Accord, INQAAHE and setting up of First Virtual University in the Country.

He has been recognized as ‘External Ph.D. Supervisor’ by Sardar Vallabhbhai National Institute of Technology [SVNIT], Surat.
He has been invited to be member of Advisory Committee of the Indo-Global Education Summit 2010.

Dr. Kapur is now providing his valuable expertise by working as a Chief Executive Officer, Meghe group of institutions for the qualitative improvement of the Technical institutions under its umbrella.

Dr. Preeti R. Bajaj holds a PhD degree in Electronics Engineering. Currently she is working as Director, G.H. Raisoni College of Engineering, An autonomous institution affiliated to RTM Nagpur university declared by UGC under Act 1956, Nagpur, India. Her research interests include various domains like Soft Computing and optimizations, Hybrid Systems & Applications of Fuzzy logic in areas of Intelligent Transportation Systems such as Driver monitoring/ Fatigue Systems.

Her professional societies affiliation include Member- Institute of Engineers, Senior Member- IEEE, LMISTE ILM-UK, LM-CSI. She has chaired and worked as reviewer for many technical sessions at International Conferences and Journals in India and abroad. She had also worked as General Chair for First International Conference on Emerging Trends in Engineering & Technology at GHRCE Nagpur, India. She has over 30 publications in refereed International Conferences and Journals.